
nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping

Alexander Millane∗†, Helen Oleynikova∗‡, Emilie Wirbel†, Remo Steiner†,
Vikram Ramasamy†, David Tingdahl†, Roland Siegwart‡

∗Equal contribution
†NVIDIA, Switzerland, ‡Autonomous Systems Lab, ETH Zürich, Switzerland

Abstract— Dense, volumetric maps are essential to enable
robot navigation and interaction with the environment. To
achieve low latency, dense maps are typically computed on-
board the robot, often on computationally constrained hard-
ware. Previous works leave a gap between CPU-based systems
for robotic mapping which, due to computation constraints,
limit map resolution or scale, and GPU-based reconstruction
systems which omit features that are critical to robotic path
planning, such as computation of the Euclidean Signed Distance
Field (ESDF). We introduce a library, nvblox, that aims to
fill this gap, by GPU-accelerating robotic volumetric mapping.
Nvblox delivers a significant performance improvement over the
state of the art, achieving up to a 177× speed-up in surface
reconstruction, and up to a 31× improvement in distance field
computation, and is available open-source1.

I. INTRODUCTION

To navigate and interact with their environment, robots
typically build an internal representation of the world. Sig-
nificant research in the past decades [1] has focused on
building maps that are both useful for robotic path-planning,
and efficient to construct. However, fulfilling these two
requirements simultaneously remains challenging.

Various successful systems have emerged for solving the
Simultaneous Localization and Mapping (SLAM) problem
efficiently [2, 3]. Typically these systems build sparse rep-
resentations of the environment in order to reach real-time
rates. Sparse maps have proven effective for localization,
however, navigation also requires dense obstacle information.

Several systems have emerged for building denser repre-
sentations of the environment on the CPU [4–6] that are
suitable for robotic path-planning. However, the frequency,
resolution, and scale at which these systems can operate is
limited by the computational burden of 3D reconstruction on
a CPU. To address these limitations, systems utilizing GPU
programming have emerged [7, 8]. These systems, however,
have typically focused on reconstruction alone and have
omitted features needed in a robotic path-planning context,
such as incremental computation of the signed distance field
and its gradients, as well as an explicit representation of free
space. We aim to address this gap.

This paper introduces nvblox, a library for volumetric
mapping on the GPU, specifically targeted at robotic path-
planning. Nvblox produces high-resolution surface recon-
structions at real-time rates, even on embedded GPUs. In
addition nvblox also produces distance fields, which are
a key output for planning collision-free paths. Central to
our approach is the use of parallel computation on the

Fig. 1: An example of an nvblox reconstruction in an office environment
(left) compared to a photo of the mapped scene (right). The reconstruction
is built in real-time from a handheld Intel RealSense Depth Camera D455.
It shows the mesh and a slice through the distance field. All operations to
build this reconstruction are performed in real-time on an embedded GPU.

GPU for all aspects of the pipeline, including queries. We
show the efficacy and efficiency of nvblox on several public
datasets, and applied to several robotic use-cases, such as
path planning for robot arms, flying robots, ground robots,
and for mapping of dynamic obstacles such as people.

In summary, the contribution of this paper is a GPU-
accelerated Signed Distance Field (SDF) library with a
convenient and flexible interface. Nvblox fuses in data from
RGB-D sensors and/or LiDAR, achieving up to 177× faster
surface reconstruction (Truncated Signed Distance Field
(TSDF)) and 31× faster distance field (ESDF) computation
than state-of-the-art CPU-based methods [4, 9]. The library
is made available open-source1 in both ROS12 and ROS23.

II. RELATED WORK

Mapping is a well-explored problem in robotics [1]. We
can categorize robotic mapping approaches into two broad
categories: sparse and dense. Sparse methods focus on creat-
ing a map representation for pose estimation and localization
while dense methods focus on reconstructing the geometry
of the environment.

Systems for dense mapping can be organized by the un-
derlying representation of the environment. LSD-SLAM [10]
and DVO-SLAM [11] build a map consisting of keyframe
depth-maps. Kintinuous [12] and ElasticFusion [8] build
reconstructions in the form of a deformable mesh and

1github.com/nvidia-isaac/nvblox
2github.com/ethz-asl/nvblox_ros1
3github.com/NVIDIA-ISAAC-ROS/isaac_ros_nvblox

ar
X

iv
:2

31
1.

00
62

6v
2 

 [
cs

.R
O

] 
 1

5 
M

ar
 2

02
4

http://github.com/nvidia-isaac/nvblox
http://github.com/ethz-asl/nvblox_ros1
http://github.com/NVIDIA-ISAAC-ROS/isaac_ros_nvblox


collection of surfels, respectively. More recently, Kimera [13]
builds a semantic mesh of the environment. These ap-
proaches build visually compelling reconstructions, but are
difficult to use for robotic path-planning, as they lack infor-
mation about observed free space and focus only on surfaces.

Recently, reconstruction systems based on neural radiance
fields (NERFs) have gained significant attention [14]. The
original offline approach has seen dramatic speedups [15],
leading to implementations that generate reconstructions
in real-time [16, 17]. However, these approaches heavily
keyframe the input image data and are therefore unlikely
to be reactive enough for robot path-planning in the control
loop.

Voxel-based methods build reconstructions that are well-
suited to robot path-planning tasks. Voxels capture the recon-
structed quantity (for example occupancy probability) over
the volume of 3D space, and can therefore represent free-
space, not only surfaces. The most common approach to
volumetric reconstruction is occupancy grid mapping [18]
and its efficient implementation in 3D, Octomap [5]. These
approaches are widely used in robotic mapping and are the
default in common robotics toolkits [19, 20].

Another popular approach to volumetric mapping utilizes a
voxelized TSDF. This approach was popularized by Kinect-
Fusion [7] which generates surface reconstructions using
a consumer-grade depth camera. The original, fixed-grid-
based approach was extended to use spatially hashed voxels
by Niessner et. al. [21]. Voxblox [4] follows the approach
of voxel-hashing but adds ESDF computation, a feature
of particular importance for robotic path-planning. Voxblox
has been used in many follow-up works which have used
it for planning [22, 23], as well as extended its mapping
capabilities, for example for global mapping [6] and semantic
mapping [24]. Despite its success, voxblox is limited in
the resolution of maps it builds due to the computational
complexity of updating a high-resolution voxel grid.

Several works have focused on decreasing voxblox’s
ESDF generation error and runtime. Voxfield [25], for ex-
ample, removes the inaccuracies caused by voxblox’s quasi-
Euclidean distance estimation and improves the ESDF run-
time by up to 42%. Similarly, FIESTA speeds up voxblox’s
ESDF computation by 4× while also computing full Eu-
clidean distance. Nvblox also uses full Euclidean distance,
therefore reducing the ESDF error, but is on average 31×
faster than voxblox.

By improving existing methods through GPU acceleration,
we create a library that provides a suitable representation
for a large body of path planners and other downstream
applications, while reducing the runtime and allowing the
creation of higher-resolution maps on the robot.

III. PROBLEM STATEMENT

Given a sequence of measurements from an RGB-D
camera and/or a LiDAR, we aim to build a volumetric
reconstruction of the scene. In particular, we compute the
surface reconstruction (expressed as either occupancy or the
TSDF) and the distance field (expressed as the ESDF). Our

Legend

Layer Cake
Depth
Image

Sensor
Pose

TSDF

Color

Mesh

ESDF

Color
Image

TSDF
Integrator

Color
Integrator

ESDF
Integrator

Mesh
Integrator

Mesh ESDF

Discrete GPU

or

Jetson

Process

Input Data

Map Data

nvblox

Fig. 2: The system architecture of nvblox, configured for TSDF mapping
from an RGB-D camera sensor. The reconstructed map (called a LayerCake)
is composed of co-located and aligned 3D voxel grids. Input depth-maps
and color images are integrated into the TSDF and Color voxel layers,
from which voxel grids containing the ESDF and a mesh reconstruction are
derived. See Sec. IV for details.

reconstructions are functions Φ : R3 → ϕ, which maps a
point in 3D space to some mapped quantity ϕ, for example,
distance, occupancy, or color. These functions are voxelized,
i.e. represented as a sparse set of samples on a regular 3D
grid, where samples are allocated in regions of space that
have been observed by the sensor. We assume that at time
step i the sensor frame Ci is localized in a frame L such
that we have access to the sensor pose TLCi ∈ SE(3).
Observations take the form of depth maps and color images.
A depth map is D : Ω → d, where d ∈ R is a depth value in
meters. The domain Ω is the image plane in the case of depth
cameras, and the beam angles in the case of rotating LiDARs.
Similarly, color images are C : Ω → c where c ∈ R3. In the
remainder of this paper, we will refer to observations from
both camera and LiDAR as images and treat the two equally.

IV. SYSTEM ARCHITECTURE DESCRIPTION

The architecture of nvblox is shown in Fig. 2. The system
consists of multiple components: the reconstructed map,
which contains several Layers, Integrators that add sensor
data to the map and components that transform one layer
type into another, such as mesh and ESDF integrators. We
discuss these components in more detail below.

A. The Map

Our reconstruction is represented as several overlapping
3D voxel grids, called Layers, following [4]. Each Layer
of the map stores a different type of (user-defined) data for
overlapping aligned volumes of 3D space. The map is sparse,
such that voxels are only allocated in regions of 3D space that
are observed during mapping. This sparsity is achieved using
a two-level hierarchy, following [21]. The first level is a hash
table that maps 3D grid indices to VoxelBlocks. In nvblox this
hash table can be queried in GPU kernels using an interface
based on stdgpu [26]. In the second level, each VoxelBlock
contains a 8×8×8 group of densely allocated voxels which are
stored contiguously in GPU memory, leading to coalesced
loads in GPU kernels.



The map is designed to be extended with new layers. To
create a new Layer, a user needs to specify the contents
of a single voxel. The library generates the definitions for
the corresponding block-hashed voxel grid at compile time,
as well as the CPU and GPU interfaces. The nvblox library
includes commonly used Layers: TSDF, ESDF, occupancy,
color, and meshes.

B. Frame Integration

Incoming sensor data is added to the reconstruction stored
in one of the map layers. This occurs in several steps. We
first ray trace through the VoxelBlock-grid on the GPU to
determine which VoxelBlocks are in view using [27] and
allocate those not yet in the map. We then project each voxel
in view into the depth image:

d = D[πsensor(TCLpL)] (1)

where d ∈ R is the sampled depth value, TCL is the camera
pose with respect to the Layer, and pL is the voxel center
position in the Layer coordinate frame. The sensor projection
function for a camera πsensor is defined as

πcamera(pC) =
1

pC,z

[
fu 0 cu
0 fv cv

] pC,x

pC,y

1

 (2)

where fu, fv , cu, cv are calibrated pinhole camera intrinsics,
and for LiDAR

πlidar(pC) =

[
(tan−1(pC,y/pC,x)− θstart) ∗ αθ

(cos−1(pC,z/r)− ϕstart) ∗ βϕ

]
, (3)

where θstart, ϕstart are the minimum polar and azimuth angles,
and αθ and βϕ are measured in pixels-per-radian and are
calculated by dividing the Field of View (FoV) by the number
of steps/beams in the relevant dimension. The function D[u]
indicates sampling the depth image D at image-coordinates
u. For a camera, we sample using nearest-neighbor, and for
LiDAR-based depth images, which can be very sparse, we
use linear interpolation with modifications to avoid interpo-
lating over foreground-background boundaries.

To update voxels, we call a per-voxel update functor on
the GPU in parallel over all voxels in view. We will briefly
cover two main update functors: one for TSDF maps and
one for occupancy maps. TSDF maps store both a truncated,
projective distance (dtsdf ) and a weight (w) per voxel, while
occupancy maps store a single log-odds occupancy value lo.

The TSDF update functor uses the voxel depth dv , which
is the depth from the voxel center to the sensor, to calculate
dp = d− dv , the projective distance at that voxel, truncates
it to within the positive and negative truncation distance ϵ,
and computes a weight w = fw(dp), where fw(x) is the
weighting function, either a constant or based on the sensor’s
error model (nvblox offers several models). TSDF distance
values are combined using a weighted average, and weights
are simply added, up to a maximum.

The occupancy update functor, updates a voxel’s occu-
pancy probability in log-odds space. A voxel is updated with
a constant negative value if dp > 0 (indicating a lower

TSDF or
Occupancy

Layer

Updated
Block

Indices

Allocate 
Blocks

+Mark
Sites

ESDF Layer

Vector of VoxelBlock
indices.
Map access.

Lower ESDF

Sweep 
Within 
Block

Update
Neighbor
Blocks

Repeat while not empty

Clear
Invalid

Fig. 3: Overall flow of the incremental ESDF computation on the GPU.
The algorithm does as much of the update in parallel as possible, iteratively
identifying blocks that need to be updated, and then running kernels on all
blocks in parallel.

probability of occupancy) or a constant positive value if
dp < 0. Bayesian fusion in log-odds space is implemented as
running addition of the update values (see [18] for details).

For TSDF maps, updated blocks are periodically meshed
using a parallelized Marching Cubes [28] algorithm.

C. ESDF Computation

The Truncated Signed Distance Field (TSDF) contains
projective distances up to a small truncation distance. For
path planning applications we require Euclidean distances
and for greater distances than the truncation band. For a
discussion on why a TSDF is insufficient for this, we refer
the reader to [29].

Our Euclidean Signed Distance Field (ESDF) computation
approach has several requirements. It must be both paralleliz-
able on the GPU and incremental, allowing us to update only
parts of the map that have changed to reduce computation
time. Finally, we avoid simplifying assumptions (like quasi-
Euclidean distance used in voxblox [4]) to maintain high
accuracy of the resulting distance field.

In order to create a highly parallelizeable ESDF computa-
tion algorithm, we base our work in spirit on the Parallel
Banding Algorithm (PBA) proposed by Cao et al. [30].
The overall flow of the algorithm is shown in Fig. 3 and
visualized step-by-step in Fig. 5. The general intuition is
to keep a list of blocks that need updating, and update all
voxels in all affected blocks in parallel, transmit information
between blocks, and repeat until convergence.

ESDF voxels come in two categories: sites and regular
voxels. Sites are surface boundary voxels, as shown in
Fig. 4. Site voxels can be parents to child voxels, and
each child stores the location its parent. Regular voxels
can have three states: unknown, free (positive distance), and
occupied (negative distance). Each observed voxel also stores
its distance to the nearest site.

First, in Allocate Blocks, a TSDF layer and a list of
updated VoxelBlocks are taken as input. Generally, TSDF
blocks that were changed since the last iteration of ESDF
integration are considered updated (this allows us to run the
ESDF update slower than sensor rate). Any new VoxelBlocks
are allocated in the ESDF as needed.

The next step is Mark Sites. We consider voxels to be
sites if their TSDF distance is within a threshold ϵ of the
zero crossing (see Fig. 5c); otherwise, an occupancy voxel
is a site if it’s adjacent to free voxels.

In addition to marking sites, this function ensures con-
sistency between the ESDF and TSDF or occupancy maps.



Unoccupied

Occupied

Site
Selected Site (Parent)

Children of Selected Site
Parent Direction

Fig. 4: “Sites” are voxels on the surface boundary, and its children are any
voxels which are closer to that voxel than any other site. Each child stores
its parent direction - the direction that points to the parent site location (only
shown for the closest 3 voxels here for clarity).

There are two general cases we need to handle: (1) newly
occupied (free → occupied) or newly observed (unknown →
either) voxels, and (2) newly freed voxels (occupied → free).
Newly occupied/observed voxels simply take on their TSDF
distance values and are added to Indices to Update. Newly
free voxels have their distances set invalid. To complicate
matters, if the cleared voxel was a site, we need to ensure
that all of its children (voxels whose closest site was this
one) are invalidated, adding their blocks to Indices to Clear.

Next, we Clear Invalid. The idea is to find voxels whose
parents are no longer a site, and therefore need distance
recomputation (see Fig. 5d). We select a subset of the map
that is within the maximum ESDF distance of the blocks in
Indices to Clear, and then check that each voxel in these
blocks still has a valid parent. If the parent is no longer
marked as a site, then the voxel distance is set to maximum,
and the block index is added to Cleared Indices. Checking
all blocks in range would seem an expensive operation but
in practice, it is very efficient to check them all in parallel.

Finally, the Lower ESDF stage (so called since it exclu-
sively lowers the ESDF voxel distance) consists of two steps
in a loop. The first is Sweeping Within a Block. This sweeps
once in each axis direction in each VoxelBlock in parallel.
This is similar to the PBA [30] approach, except confined to
the VoxelBlock boundaries. Fig. 5e shows the first positive
sweep within the block: each neighbor in the X+ direction
is updated if there is a shorter distance to the site through
that direction. We then repeat the process in X−, Y+, Y−,
Z+ and Z−. This is done over all affected VoxelBlocks in
a single kernel call, and at the end of the 6 sweeps, the
distances within a VoxelBlock are correct, given the current
values on each VoxelBlock’s boundaries.

We now reconcile the differences between VoxelBlocks by
Updating Neighbor Blocks by communicating across block
boundaries. Values are propagated from the edges of one
block to another if there is a shorter distance to a site
through the neighboring block (see Fig. 5i). If the last stage
communicated over VoxelBlock borders, those blocks require
another sweep, to propagate the communicated distance
within the affected block. We repeat the sweep-neighbor
update loop until no more blocks can be updated.

V. EXPERIMENTS

In this section, we aim to validate the central claim
of our paper: that nvblox improves the state-of-the-art in
volumetric mapping for robot path planning in terms of run-
time performance, without compromising the accuracy of the
reconstructed distance field (ESDF). We report timings on

3 different platforms: a desktop computer with an Intel i9
CPU and NVIDIA RTX3090 Ti GPU (Desktop), a laptop
computer with an Intel i7 CPU and a RTX3000 Mobile GPU
(Laptop), and a Jetson Xavier AGX (Jetson).

A. Whole System Timings

We evaluate the performance of various modules of nvblox
on the Replica Dataset [31], which provides photorealistic
renderings of synthetic rooms, and the Redwood dataset [32]
which are real scans of several environments using a con-
sumer depth camera. For Replica, we use the sequences
generated in [16].

Table I shows timings for our system’s modules; TSDF
fusion, color fusion, incremental ESDF update, and incre-
mental meshing. We perform ESDF generation and meshing
every 4 frames. Timings are averaged across 8 Replica
Dataset sequences and 5 Redwood Dataset sequences.

When compared to our previous work, voxblox [4], which
runs on the CPU, we see significant speed-ups in all modules
of the system. In the case of TSDF and color this is a well-
known result, as the GPU has been used to accelerate TSDF
mapping since KinectFusion [7]. We show two additional
findings. These speed-ups are also achievable on an embed-
ded GPU. Furthermore, similar speed-ups are available for
incremental ESDF calculation, which we describe below.

B. ESDF Timings

We aim to validate our claim of improving the state-
of-the-art in incremental ESDF calculation. We compare
nvblox against voxblox [4], and Fiesta [9], a recent and
more performant algorithm. Table II shows timings and
ESDF accuracy for our Desktop system. The ESDF error is
calculated as the median absolute voxel-wise error between
the reconstructed ESDF and a voxelized ESDF ground-truth.
The ground-truth is generated by computing the distance
between the reconstructed voxel centers, and the dataset-
supplied ground-truth surface. Table II shows a significant
speedup of 31× with respect to voxblox and 7× with respect
to Fiesta. Furthermore, the experiments show that this speed-
up does not come at the cost of reduced accuracy.

C. Resolution Scaling

The relationship between map resolution and TSDF and
ESDF computation time is critical because map resolution
is often adjusted to meet performance limitations. We run
nvblox and voxblox [4] on the office0 Replica sequence
for various resolutions. Fig. 6 shows the results of this
experiment. Even at high resolution (1 cm for TSDF and
2 cm for ESDF) nvblox performs computations faster than
voxblox running at the lowest tested resolution 10 cm. This
speed-up is likely to enable robotic applications requiring
higher precision 3D perception.

D. Query Timings

The primary purpose of mapping in a typical robotic
system is to provide collision information to path-planning
modules. For many optimization or sampling-based planners,



5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(a) Previous Map

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(b) (New) Occupancy

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 Marked
To Clear

(c) Marking

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(d) Clearing

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(e) X+ Sweep

-5

0

5

10

15

D
is

ta
nc

e 
(v

ox
)

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(f) X− Sweep

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(g) Y+ Sweep

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(h) Y− Sweep

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(i) Neighbor Borders

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

(j) Final Sweeps

Fig. 5: Marking and lowering, shown step-by-step on an image, for simplicity on 2D occupancy (rather than 3D TSDF). Here we start with a previous map
shown in a to demonstrate clearing of previously-occupied space. The bold lines represent VoxelBlock boundaries. The general idea of the algorithm is to
iteratively compute correct distance values within a VoxelBlock, and then communicate distance information across VoxelBlock boundaries to neighbors.

Component Runtime (ms)
Replica [31] Redwood [32]

Desktop Laptop Jetson Desktop Laptop Jetson
Component nvblox vox. nvblox vox. nvblox vox. Speedup nvblox vox. nvblox vox. nvblox vox. Speedup

ESDF 1.9 163.2 3.6 291.5 8.4 231.6 ×63 1.5 29.1 2.6 46.5 4.2 38.7 ×16
TSDF 0.4 - 0.6 - 1.6 - ×174 0.2 - 0.2 - 0.5 - ×177
Color 1.7 - 2.5 - 4.2 - - 1.1 - 1.6 - 2.4 - -

TSDF+Color 2.1 86.7 3.2 106.6 5.8 226.7 ×38 1.3 38.4 1.8 33.6 2.9 76.7 ×25
Mesh 1.6 6.2 4.0 12.0 12.3 15.4 ×3 0.6 12.7 1.5 15.8 2.7 23.0 ×13

TABLE I: Timings for various components of nvblox and voxblox during reconstruction of the Replica [31] and Redwood [32] datasets at 5 cm resolution.
Timings are averaged over 8 sequences for Replica, and 5 sequences for Redwood (see Sec. V-A for details). Speedup is how many times faster nvblox
is than voxblox. Some values are missing as voxblox does not separate TSDF and color integration; because of this, the TSDF speedup is assuming only
surface integration in nvblox vs. both surface and color for voxblox (which is relevant in colorless scenarios like LiDAR integration).

Median ESDF Error (m) ESDF Runtime (ms) (speedup)

Dataset Sequence nvblox voxblox Fiesta nvblox voxblox Fiesta

Redwood [3] apartment 0.04 0.06 0.05 1.7 (×14) 25 (×1) 5.5 (×5)
Redwood [3] bedroom 0.02 0.05 0.03 1.4 (×15) 22 (×1) 3.4 (×6)
Redwood [3] boardroom 0.06 0.08 0.06 1.7 (×17) 30 (×1) 4.0 (×8)
Redwood [3] lobby 0.10 0.10 0.08 2.1 (×16) 34 (×1) 5.2 (×7)
Redwood [3] loft 0.04 0.08 0.04 1.8 (×26) 48 (×1) 8.4 (×6)

Cow and lady [4] - 0.09 0.06 0.07 2.8 (×68) 190 (×1) 52 (×4)

Average 0.06 0.07 0.06 1.9 (×31) 58 (×1) 13 (×4)

TABLE II: Accuracy and runtime performance of incremental ESDF generation of the proposed system compared to baselines: voxblox [4], and Fiesta [9].
The systems are compared on the Redwood [32] and Cow and Lady [4] datasets (see Sec. V-A for details). Speedup is the runtime performance increase
over voxblox for both methods. On average, nvblox is 7× faster than Fiesta and 31× faster than voxblox.

querying for collisions can constitute a significant portion
of the total computational cost. Because these queries are
often required in batch, performing these queries on the GPU
allows us to take advantage of parallelization, and enables
GPU-based path planners, like in [33] and [34]. A query
in nvblox takes a collection of 3D points and returns their
distances to the closest surface and optionally the distance

field gradient, by performing an ESDF lookup on the GPU.
Table III shows query rates in giga-queries-per-second for
an NVIDIA GeForce 3090 Ti as well as a Jetson AGX. The
table shows the results for spatially correlated (cor.) and un-
correlated (uncor.) sampling. In correlated sampling, adjacent
queries are more likely to fall in the same VoxelBlock, leading
to coalesced memory access on the GPU and higher query



Fig. 6: TSDF and ESDF computation times with for various voxel sizes for
voxblox [4] and nvblox. Timings are generated using Replica sequences [31]
on the Laptop compute platform.

Fig. 7: An example of a reconstructed mesh from a large-scale flying robot
dataset. The integration time is less than 7 ms for a 64-beam LiDAR with
25 meter maximum range at 10 cm resolution on a laptop, and less than 20
milliseconds on the Jetson, allowing us to run at at least 2× real time.

rates. This is typically the case for robotic use cases where
the queries are spatially correlated, for example, clustered
around the robot’s current location.

E. Application examples

To demonstrate the wide utility of nvblox at various
problem scales we show examples of its use on flying robots,
robot arms, and mobile ground robots. Fig. 7 shows the
results from a dataset collected with a drone [6] equipped
with a 64-beam Ouster OS1 LiDAR. We use Fast-LIO [36]
as a pose estimator and integrate the LiDAR up to a range of
25 meters at a resolution of 5 cm, which requires less than
7 ms per LiDAR scan on a Laptop. This is an example of
nvblox’s suitability for large-scale outdoor scenarios, where
the resulting 3D ESDF can be used for both global [37] and
local planning [38]. The nvblox library has also been used on-
board a different flying robot to enable Riemannian Motion
Policies which allow reactive navigation at kHz rates [34].

Nvblox is suitable for small-scale problems as well, as
shown for high-rate adaptive planning for robot arms in
CuRobo [33], where the authors take advantage of nvblox’s
fast query speeds directly on GPU to sample more trajectory
candidates than previously possible. In general, nvblox is
useful not only because it is faster than existing methods,
but also because all data is already stored on the GPU. This

109 Queries per Second

Desktop Laptop Jetson

Dataset cor. uncor. cor. uncor. cor. uncor.

Redwood 6.2 3.3 1.7 1.3 0.8 0.5
Sun3D 7.3 3.3 1.8 1.1 0.7 0.3

TABLE III: The number of distance giga-queries per second delivered
by nvblox, averaged over several sequences of the Redwood [32] and
Sun3D datasets [35]. Even on the Jetson, uncorrelated queries take only
3 nanoseconds per point.

Fig. 8: An example of nvblox on a ground robot in an office building. The
input color and depth images, as well as the semantic segmentation are
shown on the right. On the left is the resulting reconstruction showing the
reconstructed mesh, a slice through the distance field, as well as occupancy-
probability voxels representing the reconstructed human (in blue).

enables integration with other GPU-accelerated methods,
without requiring CPU-GPU memory transfers.

Lastly, we show an image from a robot in an office envi-
ronment Fig. 8. In this example, we use PeopleSemSegnet5

to segment the reconstruction into the static environment
and dynamic elements (e.g. humans). Depth image segments
belonging to the human class are fed into a 3D occupancy
grid using a separate OccupancyLayer in nvblox. The result
is a two-part reconstruction, where dynamic parts of the
scene decay over time, but the static parts of the scene are
accurately reconstructed using TSDF fusion.

VI. CONCLUSION

In conclusion, we introduce nvblox, a library for volumet-
ric mapping on the GPU. The library fills a gap between
CPU-based volumetric mapping systems for robots, which
are computationally limited, and GPU-based systems that
typically omit features that are important for robotics use-
cases. As part of the toolbox we include a novel incre-
mental, GPU-accelerated method for computing the ESDF.
The system is optimized for operation on both discrete and
embedded GPUs. We provide experiments demonstrating that
nvblox is significantly faster both in mapping and distance
field computation, as well as at query time, than other state-
of-the-art approaches.

5catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/
models/peoplesemsegnet

http://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/peoplesemsegnet
http://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/models/peoplesemsegnet


REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scara-
muzza, J. Neira, I. Reid, and J. J. Leonard, “Past,
present, and future of simultaneous localization and
mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–
1332, 2016.

[2] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos,
“Orb-slam: A versatile and accurate monocular slam
system,” IEEE transactions on robotics, vol. 31, no. 5,
pp. 1147–1163, 2015.

[3] T. Schneider, M. Dymczyk, M. Fehr, K. Egger, S.
Lynen, I. Gilitschenski, and R. Siegwart, “Maplab: An
open framework for research in visual-inertial map-
ping and localization,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 1418–1425, 2018.

[4] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J.
Nieto, “Voxblox: Incremental 3d euclidean signed dis-
tance fields for on-board mav planning,” in IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), 2017.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stach-
niss, and W. Burgard, “Octomap: An efficient prob-
abilistic 3d mapping framework based on octrees,”
Autonomous robots, vol. 34, pp. 189–206, 2013.

[6] V. Reijgwart, A. Millane, H. Oleynikova, R. Sieg-
wart, C. Cadena, and J. Nieto, “Voxgraph: Globally
consistent, volumetric mapping using signed distance
function submaps,” IEEE Robotics and Automation
Letters, vol. 5, no. 1, pp. 227–234, 2019.

[7] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R.
Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Free-
man, A. Davison, et al., “Kinectfusion: Real-time 3d
reconstruction and interaction using a moving depth
camera,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology,
2011, pp. 559–568.

[8] T. Whelan, S. Leutenegger, R. Salas-Moreno, B.
Glocker, and A. Davison, “Elasticfusion: Dense slam
without a pose graph,” Robotics: Science and Systems,
2015.

[9] L. Han, F. Gao, B. Zhou, and S. Shen, “Fiesta:
Fast incremental euclidean distance fields for online
motion planning of aerial robots,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2019, pp. 4423–4430.

[10] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam:
Large-scale direct monocular slam,” in Computer
Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceed-
ings, Part II 13, Springer, 2014, pp. 834–849.

[11] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam
for rgb-d cameras,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE,
2013, pp. 2100–2106.

[12] T. Whelan, M. Kaess, M. Fallon, H. Johannsson,
J. Leonard, and J. McDonald, “Kintinuous: Spatially
extended kinectfusion,” 2012.

[13] A. Rosinol, M. Abate, Y. Chang, and L. Carlone,
“Kimera: An open-source library for real-time metric-
semantic localization and mapping,” in 2020 IEEE
International Conference on Robotics and Automation
(ICRA), IEEE, 2020, pp. 1689–1696.

[14] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Bar-
ron, R. Ramamoorthi, and R. Ng, “Nerf: Representing
scenes as neural radiance fields for view synthesis,”
Communications of the ACM, vol. 65, no. 1, pp. 99–
106, 2021.

[15] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant
neural graphics primitives with a multiresolution hash
encoding,” ACM Transactions on Graphics (ToG),
vol. 41, no. 4, pp. 1–15, 2022.

[16] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “Imap:
Implicit mapping and positioning in real-time,” in Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 6229–6238.

[17] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui,
M. R. Oswald, and M. Pollefeys, “Nice-slam: Neural
implicit scalable encoding for slam,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 12 786–12 796.

[18] S. Thrun, “Probabilistic robotics,” Communications of
the ACM, vol. 45, no. 3, pp. 52–57, 2002.

[19] S. Macenski, F. Martı́n, R. White, and J. G. Clavero,
“The marathon 2: A navigation system,” in 2020
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, 2020, pp. 2718–
2725.

[20] S. Macenski, D. Tsai, and M. Feinberg, “Spatio-
temporal voxel layer: A view on robot percep-
tion for the dynamic world,” International Jour-
nal of Advanced Robotic Systems, vol. 17, no. 2,
p. 1 729 881 420 910 530, 2020.

[21] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stam-
minger, “Real-time 3d reconstruction at scale using
voxel hashing,” ACM Transactions on Graphics (ToG),
vol. 32, no. 6, pp. 1–11, 2013.

[22] M. Tranzatto, T. Miki, M. Dharmadhikari, L. Bern-
reiter, M. Kulkarni, F. Mascarich, O. Andersson, S.
Khattak, M. Hutter, R. Siegwart, et al., “Cerberus in
the darpa subterranean challenge,” Science Robotics,
vol. 7, no. 66, eabp9742, 2022.

[23] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich,
K. Alexis, and M. Hutter, “Graph-based subterranean
exploration path planning using aerial and legged
robots,” Journal of Field Robotics, vol. 37, no. 8,
pp. 1363–1388, 2020, Wiley Online Library.

[24] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung,
C. Cadena, R. Siegwart, and J. Nieto, “Volumet-
ric instance-aware semantic mapping and 3d object
discovery,” IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 3037–3044, 2019.



[25] Y. Pan, Y. Kompis, L. Bartolomei, R. Mascaro, C.
Stachniss, and M. Chli, “Voxfield: Non-projective
signed distance fields for online planning and 3d
reconstruction,” in Proceedings of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2022.

[26] P. Stotko, “Stdgpu: Efficient stl-like data structures on
the gpu,” arXiv preprint arXiv:1908.05936, 2019.

[27] J. Amanatides, A. Woo, et al., “A fast voxel traversal
algorithm for ray tracing.,” in Eurographics, vol. 87,
1987, pp. 3–10.

[28] W. E. Lorensen and H. E. Cline, “Marching cubes: A
high resolution 3d surface construction algorithm,” in
Seminal graphics: pioneering efforts that shaped the
field, 1998, pp. 347–353.

[29] H. Oleynikova, A. Millane, Z. Taylor, E. Galceran,
J. Nieto, and R. Siegwart, “Signed distance fields: A
natural representation for both mapping and planning,”
in Workshop on Geometry and Beyond, RSS 2016,
2016.

[30] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan,
“Parallel banding algorithm to compute exact dis-
tance transform with the gpu,” in Proceedings of the
2010 ACM SIGGRAPH symposium on Interactive 3D
Graphics and Games, 2010, pp. 83–90.

[31] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S.
Green, J. J. Engel, R. Mur-Artal, C. Ren, S. Verma, A.
Clarkson, M. Yan, B. Budge, Y. Yan, X. Pan, J. Yon,
Y. Zou, K. Leon, N. Carter, J. Briales, T. Gillingham,
E. Mueggler, L. Pesqueira, M. Savva, D. Batra, H. M.
Strasdat, R. D. Nardi, M. Goesele, S. Lovegrove, and
R. Newcombe, “The Replica dataset: A digital replica
of indoor spaces,” arXiv preprint arXiv:1906.05797,
2019.

[32] J. Park, Q.-Y. Zhou, and V. Koltun, “Colored point
cloud registration revisited,” in ICCV, 2017.

[33] B. Sundaralingam, S. K. S. Hari, A. Fishman, C.
Garrett, K. Van Wyk, V. Blukis, A. Millane, H.
Oleynikova, A. Handa, F. Ramos, et al., “Curobo:
Parallelized collision-free robot motion generation,” in
2023 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2023, pp. 8112–8119.

[34] M. Pantic, I. Meijer, R. Bähnemann, N. Alatur, O.
Andersson, C. Cadena, R. Siegwart, and L. Ott,
“Obstacle avoidance using raycasting and riemannian
motion policies at khz rates for mavs,” in 2023 IEEE
International Conference on Robotics and Automation
(ICRA), IEEE, 2023, pp. 1666–1672.

[35] J. Xiao, A. Owens, and A. Torralba, “Sun3d: A
database of big spaces reconstructed using sfm and ob-
ject labels,” in Proceedings of the IEEE international
conference on computer vision, 2013, pp. 1625–1632.

[36] W. Xu and F. Zhang, “Fast-lio: A fast, robust lidar-
inertial odometry package by tightly-coupled iterated
kalman filter,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 3317–3324, 2021.

[37] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto,
“Sparse 3d topological graphs for micro-aerial vehicle

planning,” in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2018,
pp. 1–9.

[38] H. Oleynikova, C. Lanegger, Z. Taylor, M. Pantic, A.
Millane, R. Siegwart, and J. Nieto, “An open-source
system for vision-based micro-aerial vehicle mapping,
planning, and flight in cluttered environments,” Jour-
nal of Field Robotics, vol. 37, no. 4, pp. 642–666,
2020.


	Introduction
	Related Work
	Problem Statement
	System architecture description
	The Map
	Frame Integration
	ESDF Computation

	Experiments
	Whole System Timings
	ESDF Timings
	Resolution Scaling
	Query Timings
	Application examples

	Conclusion

